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We use energy methods to study global existence, boundedness, and asymptotic
behavior as t + », of solutions of the two Cauchy problems (and related

; initial-boundary value problems) @m
t

b s

| u (t,x) = [ a(t - To(u (1,x)) At + £(t,x) (0<t<w, x€ R
| (HF) 9
u(0,x) = uo(x) (x € R) ,
t
u t(t'X) = o(ux(t.x))x + g a'(t - T)o(ux('r,x))xd'r + g(t,x)
(VE) (0 < t <o x€ TR)
u(o,x) = uo(x), ut(O,x) = ul(x) (x € R)

s with suitably "small" data u_., u,, £, g; (HF) and (VE) are mathematical models

0 1
for nonlinear one-dimensional heat flow in a material with "memory" and non-
linear one-dimensional viscoelastic motion, respectively. Here a : [0,®) »> R,
c: R~>R, f,g: [0,») x R > R, uo,ul : R » R are given, sufficiently

smooth functions; the subscripts x or t denote partial derivatives. If
a(0) =1 formal differentiation with respect to t reduces (HF) to (VE) with
g(t,x) = ft(t,x) and ul(x) = f(0,x). But, since (HF) and (VE) have different

physical origins, the corresponding natural assumptions concerning af(:) are
drastically different and, therefore, the two problems are studied separately.

A previous study of (HF) and (VE) rests on the concept of Riemann invariant
and is restricted to one space dimension. The energy method is simpler in
principle and yields more widely applicable results.
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SIGNIFICANCE AND EXPLANATION

This paper is devoted to a study of the two initial value problems (and
some closely related boundary-initial value problems);

t ‘

ut(t.x) = f a(t - T)O(ux(T.x))xdT + f£(t,x) (0 <t <w, x€ R)
(HF) ? {
u(0,x) = u(x) (x € R), |
. |
utt(t,x) = o(ux(t,x))x + £ a'(t - T)o(ux(r.x))xdf + g(t,x) ;
(VE) (0 < t <o x€ R) ;
|
i
u(0,x) = uo(x), ut(O,x) = ul(x) (x € R) ;

for suitably "small" data uo, ul' f, g. Here a : [0,») > R, 0 : R + R,

f,9 : [0,) X R > R, uo,ul : R + R are given real functions, and a' = ge

dat’
(HF) and (VE) are mathematical models for nonlinear heat flow in a material with
memory and for nonlinear viscoelastic motion respectively. If a(0) =1 formal
differentiation of (HF) with respect to t reduces (HF) to (VE) with

g(t,x) = £_(t,x), u,(x) = £(0,x). However, the different physical origins of
the two prgblems, imply drastically different assumptions on the kernel af(-)
for each, and therefore, the two problems are studied separately.

Problems (HF) and (VE) cannot in general be solved explicitly, even in the
linear case o(r) = c2r. c a constant; here the main interest is in more |
complicated nonlinear problems, e.g. O0(r) = c2r + r“, since these provide more
accurate mathematical models of physical situations. To suggest some of the
difficulties consider the case a(t) = 1 for which both (HF) and (VE) reduce to
a nonlinear undamped wave equation (W) u,, = o(u ) + g. It is known that (W),
with the forcing term g = 0, has the property t§a§ its solutions d=velop
singularities in the first derivatives at some finite time t, no matter how
smooth one takes the initial data; such solutions are called "shocks". Therefore,
the initial value problem for (W) does not in general possess global, smooth
solutions in time.

We use energy methods to establish the global existence, uniqueness, bounded-
ness, and the decay as t > » of smooth solutions of (HF) and (VE), under
physical reasonable assumptions concerning the "memory function" a(-:), for
smooth and suitably "small" data. One interpretation of our global existence
results is that the presence of the integrals in (HF) and (VE) provides a damping
mechanism which precludes the development of "shocks". The boundedness and decay
results are relatively easy by products of the global existence results.

Due to the complexity of the equations under study any method of analysis
will necessarily be quite technical. However, the energy method developed in
this paper is simple, at least in principle, and it yields more general results
for (HF) and (VE) than were obtained in a previous study by the method of
Riemann invariants. For this reason our approach is not restricted to one space
dimension, as we illustrate by outlining a two-dimensional version of (HF).

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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ENERGY METHODS FOR NONLINEAR HYPERBOLIC VOLTERRA INTEGRODIFFERENTIAL EQUATIONS

(1), (2),(3) (1), (4)

C. M. Dafermos and J. A. Nohel

1. Introduction. In this paper we use energy methods to study global existence, bounded-

ness, and asymptotic behavior,as t * @, of solutions of two initial value problems:

t
u (6,) = [ att - To(u (1,%)) dt + f(t,x), 0 <t <=, xe€R
(HF) ¢
T u(o,x) = uo(x), X € R,
t
u,, (6%) = o(u (t,%) + £ a'(t - Mo(u (t,x)) dt + g(t,x), O0<t<® xeR
(VE)
u(o,x) = uo(x), ut(O.x) = ul(x). X € R

with suitably "small" data. Here a : [0,») > R, 0 : R+ R, f,g : [0,®) x R > R,
uo,u1 :R > R are given functions; subscripts x or t denote corresponding partial
derivatives; a prime (') denotes the derivative of functions of a single variable.

Problem (HF) represents a mathematical model for heat flow in unbounded one-

dimensional bodies of material with memory while (VE) is a model for the equation of
motion of an unbounded one-dimensional nonlinear viscoelastic body. The corresponding
initial-boundary value problems for bounded bodies have been studied by MacCamy [7],

[8): we also refer to [7], [8) for a sketch of the derivation of the equations from

physical principles. Here we are dealing primarily with the initial value problem but

in Section 6 we show that our methods apply equally well to certain initial-boundary

value problems.

About o0(-) we make the assumptions

(0) o€ CO(R), a(0) =0, 6'(0) >0

the first for technical reasons and the other two on physical grounds (in the linear

Sponsored by:
(1) The United States Army under Contract No. DAAG29-75-C-0024;
(2) Brown University, Providence, RI;
(3) The University of Wisconsin Graduate School, Project No. 180833: and
(4) The United States Army under Grant No. DAAG29-77-G-0004.
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versions of (HF) and (VE) U(ux) = ux). Concerning the forcing terms we assume

£ e Lo s ey wR g

$ tx’ Txx’ Tttt ttx’ txx

(f) f,ft,f

x'tt'

1 2 2 2
(9) 9.9, € L ([0,2); L°(R)), I T Ty ¢ L ([0,=); L°(R)) 3

meaning that f, g and their (distributional) derivatives are endowed with some smooth-
ness and decay sufficiently rapidly at infinity. The initial datum uo(x) in both (HF)

and (VE) will be assumed to satisfy

2
‘“o) Yox’ Yoxx ' Yoxxx ¢ T (R)
while ul(x) in (VE) will satisfy
(u,) u,,u, ,u € Lz(R)
1 17 1x" “1xx

We shall postpone to Section 2 the precise assumptions on the kernels a(t). For the
moment it suffices to know that a(t} is C3 smooth and, without loss of generality,
a(0) = 1.
Formal differentiation of (HF) with respect to t reduces this problem to (VE)
with g(t,x) = Et(t,x) and ullx) = f(0,x). However, since (HF) and (VE) have different
physical origins, the corresponding natural assumptions on a(-) are drastically
different (see Section 2) and as a result the above problems have to be studied separately.
If a(t) =1, t€ [0,»), both (HF) and (VE) reduce to a nonlinear undamped wave
equation Usp = o(ux)x + g. For the latter (take g = 0) it is known [4] that
the initial value problem does not generally have global smooth solutions, no matter
how smooth the initial data are. However, for the wave equation with "frictional"
damping, Uiy + u, = o(ux)x, Nishida [11] shows that when the initial data are "small",
the dissipation precludes the development of shocks, and as a result global smooth
solutions to the initial value problem exist. The proof rests heavily on the concept
of Riemann invariants and is strictly "one-space-dimensional". 1In the aforementioned

papers [7), [8], MacCamy shows that, under natural assumptions on the kernels a(t),

the memory terms in (HF) and (VE) induce dissipative mechanisms that guarantee the .

-2=




? existence of global smooth solutions when the initial data and the forcing term are

- “small". The proof combines certain energy integrals with Nishida's Riemann invariants
argument and consequently is "one-space-dimensional". For corrections of certain
misprints and oversights in (7], [8] see Section 2. The question of obtaining the

existence and uniqueness of a suitable local solution for (HF) and (VE), to be continued

with the aid of a priori estimates, is not discussed in (7], [8], but this gap can be
filled by the method outlined in Nohel [12]. For the multi-space-dimensional nonlinear
wave equation with frictional damping and "small" data Matsumura [9], (10]) establishes
the existence of global smooth solutions by a method that is based exclusively on
"energy" estimates. (We are grateful to Professor Nishida for explaining this method
to us.) The object of this paper is to study (HF) and (VE) by a similar approach. We
are restricting our attention to the one-space-dimensional situation for clarity - the
method seems to work in any number of space dimensions; a two-dimensional version of
(HF) is discussed briefly in Section 7. 3
Our procedure can be outlined as follows: In Saction 2 we reduce, similar to

‘ [7], [8]1, both (HF) and (VE) to the equivalent form

t
)
u, (tx) + 3—':% k(t = t)u (1,2d1 = o(u (t,x)) + 8(t,x), 0<t<w, xe€R
(1.1)
u(0,x) = uo(x). ut(O.x) = ul(x). x € R
where k(t) is the resolvent kernel associated with a'(t) (see Section 2) and ¢(t,x),

determined by k(t) and f(t,x) or g(t,x), satisfies

WENO—

2 2
(¢) ".t'.x’.tt'otx € L ([0,®); L"(R))

for problem (HF), and some additional conditions for (VE) (see conditions “v)' Section 2).

In Section 3 we prove with the help of the Banach fixed point theorem an existence and
uniqueness theorem of a local solution to (1.1) that applies both to (HF) and (VE). In
Sections 4 and 5 we establish for (HF) and (VE), respectively, "energy" estimates that
allow the extension of the local solution, constructed in Section 3, into a global 1

solution. These estimates have the form




oo @

1
Plu,uldxdt + [ [ T[u,0]dxdt
0

-0

s 2
(1.2) E(t) - E© <=-[ [ oluulaxdt + [ [
0 -0 0 -0

where FE(t) is an "energy" that controls the growth of the solution; ¢lu,u]l, the
dissipation term induced by the memory term, is a positive definite quadratic form

in a set of derivatives of u(t,x); P[u,ul, the remainder term due to the nonlinearity
of the problem, is a quadratic form in the same derivatives as Q[u,u] and with
coefficients that are small whenever the "energy" FE is small; finally, TT[u,¢] is a
bilinear form in the set of derivatives of u(t,x) involved in Q[u,u] and in &(t,x)
and some of its derivatives. The idea now is that for as long as £E(t) is small,
P[u,u] is dominated by -Q[u,u]l. Moreover, the Cauchy-Schwarz inequality allows us

to dominate the u-part in I[u,®] by =-Q[u,ul. Then, if F(0) and ¢ are "small",
(1.2) shows that F(t) remains small and the cycle closes.

Finally, we note that both problems (HF) and (VE) are of the abstract form

t

u"(t) + a(0Au(t) + [ a'(t - T)Au(1)dt = F(t), O <t <
a) 2
u(0) = uye u (0) = uy

where A 1is a nonlinear maximal monotone operator in a Hilbert space H, F(t) takes
values in H while u(t) takes values in a reflexive Banach space W dense in H.

The global existence problem for (A) was extensively studied by S. O. Londen [5], [6]

for a class of kernels a(-) which are positive, smooth, decreasing, convex on [0,®)
and which satisfy the crucial condition a'(0+) = -»., Unfortunately, this last condition
is not satisfied by most memory functionals arising in heat flow theory or in visco-

elasticity.

“f=
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2. Properties of Resolvent Kernels and Transformation of Problems (HF) and (VE). We

first show how (HF) and (VE) can be brought to the form (1.1). We define the resolvent
kernel k(-) associated with a'(") via the equation
(k) k(t) + (a'sk)(t) = -a'(t), O <t <o,
where, throughout, the * will denote the convolution, i.e.,
t
(@a'sk) (t) = [ a'(t - k(1T .

0

By standard Volterra equations theory, if a € C3 smooth, k(°) is uniquely defined

and is C2 smooth on [0,) (see, e.g., Bellman and Cooke (2, Thm. 7.4}). Moreover,

for any ¢ € Lioc(o,w), the unique solution of the Volterra equation

(2.1) y(t) + (a'»y)(t) =9(t), O0< t<w,
is given by
(2.2) y(t) = ¢(t) + (keo) (t), Qic L <@,
We now visualize the equation in (VE) as a Volterra equation of the form (2.1)

with y = 6(ux)x so that (2.2) yields
(2.3) utt(t'X) + (k*utt)(t.x) = c(ux(t.x))x + g(t,x) + (k#g) (t,x) .

An integration by parts with respect to t in the convolution term on the left-hand
side of (2.3) shows that (VE) is equivalent to (1.1) with

(2.4)V ®(t,x) = g(t,x) + (keg) (t,x) + k(t)ul(x) ~

Problem (HF) is treated in a similar way. First we differentiate the eguation in
(HF) with respect to t thus bringing it to the form
utt(t'X) = o(ux)x(t,x) + (a'-o(ux)x)(t.x) + ft(t,x) :
then we use (2.2) to get
utt(t,x) + (kﬁutt)(t,x) = G(ux(!:..x))x - ft(t.xl + (k'ft)(t.x)

and, finally, we integrate by parts with respect to t in the convolution terms to

arrive at (1.1) with

(2.4) b(t,x) = £ (t,x) + k(0O f(t,x) + (k'#f)(t,x), O <t<w=, xe€R
(2.5)“ u,(x) = £(0,x), xe€ R .
-5-
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We note that, on account of assumptions (f), “I(X)' given by (2.5)H, satisfies assump-

tion (ul)- .
We now state for each case, separately, the assumptions on the kernels a(-) and

we derive the induced properties of the associated resolvent kernels.

I. Heat Flow Equation

We assume

(i) a(t) € C3[0,»), a(t),a'(t),a"(t),a™ (t) are bounded on [0,=)

(ii) a(0) =1, a'(0) <0

(a,) 3
H (iii) 3a™(e) e tr0,), 3 =0,1,2,3, m=0,1.23
@
(iv) Re a(in) > 0, n € R, where a(s) = f e-Sta(t)dt .
0
We note that there is no loss of generality in assuming a(0) = 1, provided a(0) > 0.
If a(0) # 1, equation (k) is modified to:
a'(t)
TR o ——
a(0)k(t) + (a'*k) (t) 2(0)

(2.2) and all subsequent equations involving k are not affected by this change in an
essential way. The following proposition summarizes properties of the resolvent kernel

k(t) associated with a'(t).

Lemma 2.1. Assume that (aH) are satisfied and let k(t) be the resolvent kernel

associated with a'(t). Then

(i) k(t) € c2[0,»); k(t),k'(t),k"(t) are bounded on [0,%).

(1) k(&) = k, + K0 k= 757 > 0 K™ (0) € th(0,®), m = 0,1,2.

(iii) For any T > O there is a number o > O such that

- a E 3
(2.6) [ vit) S (kev)(v)dt > a [ vi(vrat
H & at -l

for every v(t) € L2(0,T).

Assertion (iii) of Lemma 2.1 is the manifestation of the dissipative character
of the memory term and will play a central role in Section 4. For the (harmonic

analysis) proof of Lemma 2.1 we refer to [7, Lemma 3.1]. We note that our assumptions

-6~
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(ln) are weaker than the corresponding assumptions (az) in [7], the reason being that

our method does not require that moments of K and K' be in Ll(o.v) (see [7,

| : Lemma 3.1, assertion (ii)]). The reader of the proof of Lemma 3.1 in [7] should be
aware of the following misprints: Formula (3.5) should read

a(s) - a() _ _1 i

k(s) = - =~ - = 5
sa(s)a(0) a(0)

| Moreover, the assumption in [7] that a(t) € c2[o,~) is insufficient since it only

yields o(i—) for the error term in [7, eq. (3.8)] rather than O(—lz—), as it is needed. 5
s
It is for this reason that we are assuming here a(t) € C3[0,»). The proof of (iii) 1

can be accomplished more simply by the technique of [13, Theorem 1] than that of [7];

the same comment applies to the proof of (2.11) below.
We note that assumption (f) together with k" (t)e Ln(O,w) and k'(t),k"(t) € Ll (0,=)

(Lemma 2.1) yield that ¢(t,x), as defined by (2.4)3. satisfies condition (%)
recorded in Section 1.

4 II. Viscoelasticity Equation

We make the following assumptions concerning the kermel a(t) in (VE):

(1) a(t) € C3[0,°'), a(t),a'(t),a"(t),a'" (t) are bounded on [0,®)

(ii) aft) = a_+A(t), a >0, al0) =1

(a,)
b i ™™ () >0, 0<t<w, m=0,1,2; A'(t) ¥ 0

™ e o9, 3=01,23, m=01,23.

(iv)
We note that (av) (iii) implies (aﬂ)(iv) by a standard result [13, Cor. 2.2]. The

difference between (aH) and (av) that has a major effect on the properties of the

corresponding resolvent kernels is that in the former al®) = 0 while in the latter
a(») =a_ > 0. In the place of Lemma 2.1 we now have

Lemma 2.2. Assume that (nv) are satisfied and let k(t) be the resolvent kernel

associated with a'(t). Then

(i) k() € c2[0,®); k(t),k'(t),k"(t) are bounded on [0,®).

(m)

i) k™ () e 10,0, m=o0,1,2.

(iii) For any T > 0 and every v(t) e Lz(om,

T

4
(2.6),, (}; vit) 3¢ (kav)(t)at > 0 .

-V
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For a proof of Lemma 2.2 see [8, Lemma 3.1].
We note that assumption (g) together with k" (t) € L7(0,*) and

k(t) k' (t) k" (t) € Ll(O,m) imply that ¢(t,x), defined by (2.4)v, satisfies

1 e 2 0
(@) 0,0 € L ([0,®); L°R)), 0,0 ,0 € L°([0,®); L°(R)) ,

namely conditions that imply (¢) of Section 1.

In contrast to (Z.G)H. (2.6)v only indicates a weak dissipative mechanism. Indeed,
the dissipative mechanism for the viscoelasticity equation is guite subtle and it will
reveal itself through a device of MacCamy (8] that involves still another form of (VE).
We define a function r : (0,®) » R by

o
(r) r(t) = B8 + k(t) + B8 [ k(r)dr
6]
where B8 > 0 is a constant to be specified below and k(t) 1is the resolvent kernel
associated with a'(t). It is easily verified that the solution y(t) of the Volterra
equation (2.1) satisfies
€
(2.7) y(t) + B [ y(r)dt = ¢(t) + (rep)(t), 0 <t <o .
(4]
Since vy = a(ux)x in (VE) satisfies an equation of the form (2.1) we obtain from (2.7)
€
(2.8) utt(t'X) * (rtutt)(t,x) = o(ux(t.x))x ERE g O(UX(T,X))XGT + g(t,x) + (rxg)(t,x) .
Thus (VE) is equivalent to the problem
t
u (6% + (rsu ) (6,%) = OQu (£,30) + 8 [ 0@ (1,0) 41 + ¥(t,x),

0
(2.9) OLKt<» x € R

u(0,x) = uo(x), ut(o,x) ul(x), xe€¢ R

where
(2.10) Y(t,x) = g(t,x) + (r=xq)(t,x) .

The justification for considering the complicated variant (2.9) of (VE) is

provided by the following proposition:

_8-
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Lemma 2.3. Assume that assumptions (av) are satisfied and let r(t) be defined by

(r). Then

(i) r(t) € c%[0,=), r(t).r'(t),r"(t) are bounded on [0,®).

(m

(i) r(t) =r_ +R(t); r, = B/a_; R (t) € L' (0,@), m=0,1,2.

(iii) For any T > O there are constants y,q > 0, with 8q < 1, such that

T T

T
(2.11) af v 4 (rev)(v)at - ] vie)(rev)(v)at > (1 +y) [ vi(t)at
0 b 0 5 0

for every v(t) € L2(0,T)-
It is (2.11) that reveals the dissipative mechanism induced by the memory term
in the viscoelasticity equations. This estimate will play a crucial role in Section 5.
For the proof of Lemma 2.3 we refer to [8, Lemma 3.2]. For the benefit of the
reader we record here the following corrections in the proof of [8, Proposition 4.1]):
Equation (4.16) should read
-gqnImr(in) - Rer(in) = T(g,B,m) + 1, ne R ;

equation (4.26) should read

3 min)g> + n(n)
q q(n(n) - q)

and the sentence following this aquation should read: "Given i, 5, 0= a < 5 <y

there exists an € > 0, € = E(&,é), such that for every a <qx< 6 (4.27) holds".

Note also that 5— - By(q,.n,) tends to -a(0) (and not to -a(0)/g°). 1In the conclud-

k
ing argument of the proposition one needs to choose 0 < € < min(e(q,Q), -2a(0)) in

order to carry through the proof, since Y(q,B,n) > gB - 1 - a(0)gq and O < % - B « %.
by the choice of q and B.
We close this section by noting that on account of (2.10), assumption (g) and

' (E).x () ¢ LI(O,Q) (Lerma 2.3), the forcing term VY(t,x) in (2.9) satisfies

1 2 ' 2 2
(Yv) Vt € L°([0,»); L°(R)), Vttlvtx € L ([0,»); L"(R))




R

3. Local Existence Theorem. We discuss here existence and uniqueness of local solutions

to problem (1.1), applicable to both (HF) and (VE). Throughout this section we will
be assuming that the initial data satisfy conditions (uo), (ul) and the forcing
term satisfies (¢). As regards the kernel k(t), we only require that

k'(t),k"(t) € c(Oo,») N Ll(O,w) so that our analysis covers both the (HF) and the (VE)
cases. On the other hand, since the local solution will not be necessarily "small",

for the well-posedness of the problem we have to replace (0) by the stricter assumption
(o) * o€ c3(R); 0(0) = 0; o' (W) 2 Do >0, W€ (7m,x)

This assumption will be dropped in Sections 4 and 5 where we will limit ourselves to
"small" solutions.
The main result of this section is

Theorem 3.1. Let the assumptions (o*), (&), (uo), (ul). and k',k" € C[0,») N Ll(O,m)

be satisfied. There is a unique solution u(t,x) € C2([0.T0) x R) of (1.1) defined

on a maximal interval IO,TO), T, < », such that, for T e [0,T0),

(o]

(3.1) w ou e, u e e L7(10,71; L2(R)

» u u
t tt Vex Uxx Yttt Veex Vexx Vxxx

Furthermore, if T0 < =, then

2 2 2 2 2 2
(3.2) f [ut(t,X) + ux(t.x) + utt(t'X) + utx(t,x) + uxx(t,X) +u

2
ttt(t,x) + uttx(t,x)

-0

2 2
* utxx(t’X) ¥ uxxx(t,x)]dx bl R - T0 %

The proof of the above proposition will be based on an application of the Banach
fixed point theorem. We begin with some preparation.

For positive M and T we let X(M,T) denote the set of functions
u(t,x) € CZ(IO,T] X R), with initial conditions u(0,x) = uo(x). ut(O,x) = ul(x).
which satisfy (3.1), and

o
2 2 2 2 2 2 2 2 2 2
“3 S + + + + + + + i
§tud) [ou?] {m Iut ux utt utx uxx +uttt uttx utxx uxxx]dx A

Note that X(M,T) is nonempty if M is sufficiently large. Also observe that for

-10-
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u(t,x) € X(M,T) (3.3) easily yields

(3.4) sup  {fu (t,x) |, |u (e, ], Ju, (toxd |, o (e, |, Ju ()]} <™
[0, TIXR t X tt tx xXx

o
(e.g. ui(t,y) = 7 [(e,01,ax < 2 [ Ju (6,000, (E0dx < I3 (e +u2 (e lax < W2,
- - -
and similarly for the others).
‘é‘ We now construct a map S : X(M,T) - CZ(IO,T] x R) which carries v(t,x) € X(M,T)
into the solution u(t,x) of the linear initial value problem
utt(t'X) + k(O)ut(t,x) = o'(vx(t,x))uxx(t,x) + o(t,x) - (k'tvt) (tex),

(3.5) B m KR

u(0,x) = uo(x), ut(O,x) = ul(x), X € R .

Our goal is to show that S has a unique fixed point in X(M,T) since the desired
solution of (1.1) is such a fixed point (note that ]
)

3t (ktut)(t.x) = k(0)u, (t,x) + (k'-ut)(t,x)).

Lemma 3.1. If M is sufficiently large and T sufficiently small, then S maps

- X{M,T) to itself.
Proof. We have to show that the solution of (3.5) satisfies (3.1), (3.3), provided

that M is large and T is small. To this end we establish below a number of a priori

"energy" estimates for solutions of (3.5).

Let us assume, temporarily, that o(-), k(t), uo(x). ul(x), ®(t,x) and v(t,x)

are C  smooth on the corresponding domains of definition and that uo(') ’ ul('), ®(t, )

and v(t,-) are compactly supported on R. Then the solution u(t,x) of (3.5) will

be C. smooth on [0,») x R and u(t,-) will have compact support in R for t > 0.
Multiplying the equation in (3.5) by ut(t.x) and integrating over [0,s] x R,

0 <s < T, weobtain, after an integration by parts with respect to x and other

straightforward calculations (for simplicity we omit the arguments of functions whenever

no confusion arises from doing so in this and subsequent calculations),

-11-




Yo' g e 2 T 2
(3.6) 2 L ug (s, x)dx + > L o' (v, (s.3))uj (s, x)dx - 5 {m ug (0,x)dx
g™ 2 b 2
-3 {., o' (v, (0,%))u (0,x)dx = - g L k (0)ugdxdt

s o
" 2 = "
o (vx)vtxuxdxdt g {w o (vx)vxxutuxdxdt

N[

S ©

®

Q0 ==
s ) s @

+ [ f $u dxdt - f f (k'sv )u dxdt .
Q =-x Q -

To aid the reader we indicate a calculation contained in (3.6); similar calculations
are involved in (3.7)-(3.10) as well as in Sections 4, 5, 6, 7. Integrating by parts

with respect to x one has

s @ s o s CY
/ f c'(vx)uxxutdxdt == f f o'(v_)u_u dxdt - f [ o"(v_)v__u u dxdt .
0 0 - 0 -

S X tx x 9 K TE K
3 Laedl 52 : ’ : . ) ¢
Observing that uxutx = 2 3t ux and integrating the first integral on the right side
by parts with respect to t yields
=3 @ S o
J I 2
] b o - Ll
ol e (v u, u dxdt = / 56 { 5 o' (v )u dx}at
0 == 0 -0
T 2 T
+ 5 g {w o} (vx)vtxuxdxdt - é {m o] (vx)vxxutuxdxdt i

which, together with the other terms resulting from multiplying (3.5) by u, and
integrating, easily gives (3.6).
We next differentiate the equation in (3.5) with respect to t obtaining

u ¢ + k(O)utt =0 (vx)ux

- + 0"(v.)v_ u + 0t - k'(O)vt = (k'*vt)(t.x)

xt X' tx xx
We multiply this equation by utt(t'X)' and following the procedure used in the

derivation of (3.6) we obtain

~12-




(3.7)

N

@0 L] @
2 1 2 1 2
!, utt(s,x)dx-vs-f o' tv (s,x))ug (s,x)dx -3 {. ug, (0,x)dx

@ S © s @
2 2 1 2
9t (v, (0,x))ug (0,x)ax = = [ [ k(O)uf axat + [ [ 3 0" (v, )v ul dxdt

4
=0 0 == 0 -

N |-

s w S o
- £ {.. o(v v u u dxdt + [ [ o"(vv

s
exe et dxat + B | o,u,  dxdt
0 == 0 =-w
S w

S
= £ £, k'(0)v,u_ dxdt - £ {,

"
(k "’t)uttd"dt A

We now differentiate the equation in (3.5) with respect to x, we multiply by

utx(t,x) and we follow the above standard procedure to get

2 e 2 ST e
{n utx(s,x)dx + 3 {a o (vx(s,x))uxx(s.x)dx 2 [w u

tx

(3.8) (0,x)dx

N

© s ™
p 2 2
[ o'tv (0, (0,x)dx = = [ [ k(O)ug dxat

0 ==

N

501 2 8 o s ™

- ag" -
2o (v v, u dxdt + [ [ du dxdt - [ [ (k'sv, udxdt .
-0 0 == Ul ==

+

—

Q

The next estimate is obtained by taking the second derivative of the equation in
(3.5) with respect to t and then multiplying by uttt(t'X)' In the present case
note from the eguation preceding (3.7) that g% (k"tvt)(t,x) = k"(t)vt(o,x) + (k"tvtt)(t,x).
The result of the calculation is

¥rea 1 : 2 £ 4
(3.9 3 {‘ Upee (Se00dx + S [ o' (v_(s,x))ul (s, x)ax - s { ug ¢ (0, %)dx

o s @
; 2 ai 2
{. 0" (v, (0,x))ug,  (0,x)dx g {. k(0)ug, dxdt

[}
N -

8 o § =
1w 2 - *
+ g {. 3 " v v ul axat g J ottvpv uu . axdt

g8 ™
+ [ [ 2°~(vx)vtx“ttt“txxdxdt 30t | 0" (v v

u__u dxdt
O = - ttx xx ttt

-13~
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TR O

s 3 s s ®

" =N (]

+ f f o (vx)vtxuxxuttt + [ / ott“tttdxdt f f k (O)Vttutttdxdt
Q0 == 0 -00 0 -c0

S
" e, "
- [ | xwv0xu dxdt - [ [ (kv )u dxdt .
Q0 =-» 0 =-x

The final estimate is obtained by taking the second derivative of the equation in

(3.5) with respect to t and x and multiplying by uttx(t’x)' We thus obtain

* 1 . 2 G
f uttx(s,x)dx +3 f o (vx(s'X))“txx(s'x)dx i {m a

2

(3.10) ttx(O.x)dx

N

[ S o
1 ' 2 g 2
-3 ot o)l (0,xax = g / xug, axat

S
" 2 "
ot (v v, up dxdt + g [@ o" (v v, o u dxdt

N =

oL
0 ==

S oo

s
" "
g {m o (vx)vtxuttxuxxxdxdt + g {m o (vx)vtxvxx“xxuttdedt

+

& o s o s o
+f [ 8, b e~ f k' (0)v, u . dxat - [ / (k"sv, Ju . dxdt .
Q0 =« 0 =~ 0 =-»

We now observe that utt(O.x), uttx(o,x) and uttt(o’X) can be expressed through

(3.5) in terms of u x(x), u (x), u

o 0xxx(x), ul(x). u

x(x), u x(x), ®(0,x), Ot(O.x)

0. 1 1x:

and Ox(O.x). It follows that, since u(t,x) is smooth, u(t,x) € X(M,T) provided
that M is sufficiently large and T is sufficiently small. We shall use (3.6)-(3.10)
to estimate M and T independently of our provisional smoothness assumptions. To
this end, using (3.3), (3.4) and the Cauchy-Schwarz inequality, we majorize each
integral on the right-hand side of (3.6)-(3.10) by a fixed constant (i.e. independent
of M) plus MzT times a constant depending on M. For example, in (3.9),

S o 2

" 2
dxdt < max|o" (v )v, | £ !, (Uppy * Upy,)dxdt

| A

s o
g {e 207 9 Vet e M
" 2
(M max |o"(-)[)M°T ,
[-M, M]

(S

=14~




e (i nt o

e i 2o uls 2
o, dxdt + £ {. Up, dxdt < -4 oy dxdt + H°T ,

0 ==

u dxdtif.f

-3 @
£ {_ Ceeleee

ErE—

0 -co

s ® 8 ™ 8 o
" " 2 2
= £ {. (k -v“)utttdxdt _<_f f (k "’tt) dxdt + f f utttd’dt

0 = 0 ==
o 2
<1 |k |av? + 1M’ .
0

Since um(t,x) does not appear on the left-hand side of any of the estimates (3.6)-(3.10),
we have to express it in terms of other derivatives via

(3.11) cv'(vx)ux =u

- L £ [}
e i k(O)“tx o (v )v L ox + (k 'vtx)

X' xx
which is obtained by differentiating (3.5) with respect to x. On account of (o0)*,
(3.3), (3.4) and in conjunction with (3.8), (3.10), equation (3.11) yields an upper

2

@
estimate for f uixx(t,x)dx by a fixed constant plus M°T times a constant depending
-00

on M.

Combining all the above estimates we obtain

(3.12) f [u:(t,x) + u:(t,x) +u

-0

2

2 2 2
tt(t'x) + utx(t,x) + uxx(t,x) + uttt(t'x)

+ (t,x) + uZ _(t,x)]dx < A(u_,u ,8) + BMMT, O0<et<T.
X XXX N o BT e R

2 2
+
t (t,x) u

Ue

The constant A can be estimated solely in terms of the LZ(R)-norlu of u ., u

Oxx*
of

Ox

" 2 ; 1,2
Yoexx’ Y1’ ulx' Uy e’ the L°([0,®); L“(R)) norms of ¢, ¢

e % %t Y Po
(0)*; bounds on G'(-), o"(-) and k'(+). The constant B can be estimated solely
in terms of M and bounds on 0'(-), 0"(:), o™ (-), k'(*), k"(*). It follows that,
even though (3.12) was established under supplementary smoothness conditions, its
validity can be extended by a simple density argument to the standing assumptions of
this section.
1/2 -1

We now select M > [2A(u°,u1,0)] and then T < [2B(M)]) in which case the

right-hand side of (3.12) is dominated by Mz. It follows that with this selection of

M and T, S maps X(M,T) into itself. The proof of Lemma 3.1 is complete.

-15-




We now equip X(M,T) with the metric
P 2 2.5 1
(3.13) p(u,u) = max {f [(u (t,x) - u (t,x))° + (u_(t,x) - u_(t,x)) ]dx} .
t t x X
[0,T] ==
Using the lower semicontinuity property of norms under weak convergence in Banach space,

it is easily verified that X(M,T) becomes a complete bounded metric space. We now have

Lemma 3.2. For M sufficiently large and T sufficiently small the map

S : X(M,T) » X(M,T) is a contraction.

Proof. Let v(t,x),v(t,x) € X(M,T). We set u=Sv, u=6Sv, V=v=-v, U=u - u.
Then U(t,x) is a solution of the initial value problem

U (0%) + k(0 U (£,%) = o' (v, (£,x))U_ (€,x) + x(t,x)Gxx(t,x)VX(t,x) - (k' V) (t,x),

(3.14) 0O<t<T xé€R

u(o,x) = 0, Ut(O,x) =0, xXx€R

where x(t,x) 1is the bounded continuous function

0'(vx(t.x)) = c'(vx(t,x))

- i # v
vx(t,x) = vx(t,x) if vx(t.x) vx(t,x)

(3.15) x(t,x) =

o"(vx(t,x)) if vx(t,x) = vx(t,x) X

Multiplying (3.14) by Ut' integrating over [0,s] X R, 0 < s < T, and after an
integration by parts we obtain
L] oo

(3.16) = f Uz(S.x)dx g f o' (v (s,x))Uz(s.x)dx
& , - 2 7 X x

o 2 o | 2
- £ / k(0)ugaxdt + £ { 5 0" (v )v, Ulaxdt

L sao-
- g { " (v, )v  U.U dxdt + £ [ XU,V U dxdt

s =
g !w (k*V,)U daxdt .

We minorize the left-hand side of (3.16), using (0)*, and we majorize each integral on

the right-hand side using (3.4) and the Cauchy-Schwarz inequality thus obtaining

-16~
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.17 [ Wien + e(s,x0lax

-0

o« s ™
2
<iowax [ V3w +viexldxat+y [ [ 2% 40l (6,0 )dxdt, (0 < s < T
[0,T] - t x o ia t x

- oo
where 1 depends solely on M, max |o'(*)]|, max [o"(-)], P, k(0), and [ |x'(t)|at.
('M'M] (-MIM] 0

Applying Gronwall's lemma to (3.17) yields

(3.18) max [ 102,00 + vi(t,0ldx < Te"T max [ (v3(t.x + vi(t.x)1dx .
[0,7] ~= °© » 0,1 == °© %

We now fix M sufficiently large and, subsequently, we pick T so small that on the

one hand S maps X(M,T) into itself (Lemms 3.1) and on the other T < L mhis

a
implies that

(3.19) ommﬁ)i%ow&h for v,v € X(M,T) .

The proof of Lemma 3.2 is complete.

Proof of Theorem 3.1. From Lemma 3.2 and the Banach fixed point theorem we deduce

the existence of a unique fixed point of S in X(M,T), for some M > 0, T > 0, which
will be a solution of (1.1) on [0,T] x R. Let DS be the maximal interval of
existence of a solution u(t,x) of (1.1) which satisfies (3.1) for all
T < TO' Then u(t,x) 1is locally and hence also globally unique as the tixed point
of a contraction.

If To < ® and (3.2) is not satisfied, we can extend u(t,x) up to t = To so
that u(t,x) ¢ c({0,T ) x R} and, by weak convergence in LZ(R), u (T ,X), u_ (T ,x),

2
uxxx(TO'x)' ut(To,x), utx(TO'x)' utxx(To.x) € L (R). But then u(t,x) can be

extended as a solution on a small interval [TO,TO + €] beyond To which is a
contradiction. This completes the proof of Theorem 3.1.

As o(:), k(t), and the data uj(x), u (x} and @(t,x) get smoother, the
solution becomes smoother. We record below a regularity result that will be used in

Sections 4 and 5.

Y=




.

Theorem 3.2. Let the assumptions of Theorem 3.1 be satisfied. Under the additional

assumption
a(-) € ctry
2
(3.20) uoxxxx(x),ulxxx(x) € L (R)
0.0 e L2(10,2; L2r) ,

ttt tcx'°txx

the solution wu(t,x) of (1.1), established by Theorem 3.1, also has the property

(3.21) e L°(10,71; L?(m) ,

u
Ueeet Vetex Vetxx Vtaokx’ Uxxxx

for every T < 'l‘o, where IO,TO) is the maximal interval of existence.

Sketch of proof. For positive M, N, T, we denote by Y(M,N,T) the set of functions
u(t,x) e c3([0,7] x R), with initial conditions u(0,x) = uj(x), u (0,x) = u, (x),
which satisfy (3.1), (3.3), (3.21) and

2 2 @ 2 2 2 2 2 2 2
(3.22) sup [ [ul + SRS PR W R W SR L RS T RS e
[0,T] -=
+ 0 2 e + u? ldx:Nz.

ttex Ytk ¢ Yexxx T Uxoox

We consider again the map S that carries v(t,x) to the solution u(t,x) of (3.5)
and we try to show that it has a fixed point in Y(M,N,T), for appropriate values of
M, N, T. We proceed as in the proof of Lemma 3.1. To the set of "energy" integrals
(3.6)-(3.10) we append another integral obtained by forming the third derivative of

(3.5), with respect to t, t and x, and then multiplying by Upex® This allows
@ L
; : 2 2
the estimation of f utctx(t,x)dx and f u, (t,x)dx. These estimates together with

-C0 -00

@ @
4 " 2 2
(3.5) yield estimates for (t,x)dx, f u, (t,x)dx and f u m‘(t:,x)dx.

o«

[ Wl
tttt

-00

Combining all above estimates we obtain, as in the proof of Lemma 3.1, the following

analog of (3.12):

2 2 2 2 2 2
(3.23) {. [ug (e + uy (£,%) + uf (£,%) + ul (6,3 +ul (%) +u

2
ttt(t'x) + utu(t.X)

+ - x(t,x) + uixx(t,x) + uz (t,x) + uztu(t.x) + u2 (t,x)

Yex tett t txx

+ud (e +u (t,x))dx < A (uu,.8) + B (MNT
txxx ' xXXX ' - (Al 3

-18=-




The crucial observation is that B. depends on M but not on N! The reason is that
in deriving (3.23) the integrals to be majorized are at most quadratic in the highest
order derivatives (whence the term Nz) with coefficients that depend on derivatives

of v(t,x) of order at most two and are thus bounded, in view of (3.4), solely by
functions of M. Similarly, we recall that p, in (3.18), depends on M but not on N.
It follows that the maximal interval of existence of the smoother solutions is controlled
solely by M, i.e., (3.21) will be satisfied for any T for which (3.1) is satisfied.

This concludes the sketch of the proof of Theorem 3.2.
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4. Global Existence and Asymptotic Behavior of Solutions of the Heat Flow Equation.

this section we consider problem (HF) and we prove that if the initial data and the

In

forcing term are "small" then the maximal interval of existence of the solution constructed

in Section 3 is [0,») and that the solution decays to zero, as t » «». Our strategy

is to show that the dissipative mechanism induced by assumptions (aH) overrides the
growth tendencies of the solution caused by the nonlinearity of o(-). Conclusion
(2.6)H of Lemma 2.1 (iii), which was not used in Section 3, plays a crucial role in
this argqument. The precise form of the result is

Theorem 4.1. Let (o), (ay), (f) and (u)) be satisfied. If the L2(10,»; L2(r)

2
norms of f, ft' fx. ftt' ftx' fxx' feier fttx' ftxx and the L“(R) norms of u

0

Ox

qux' quxx are sufficiently small, then there is a unique global solution

ult,x) € c2(10,®) x R) of (HF) and

(4.1) e L”(10,=); L3(R)) ,

UV e Bex Unx Yttt Yeex Yexx Yxxx

(4.2) e L2(t0,=); L2@®) ,

UerUee Yex Ui Yttt Yeex Yexx’ Yxxx

(4.3)  u (€, ) u (6, (€, u (t,5) 0, t >, in L’ ,

tt tx
(4.4) ut(c'X)'“x(t'X)'utt(t’X)'utx(t'X)’“xx(t'x) + 0, t >+ o, uniformly on R .
Remark 4.1. It follows from the proof of Theorems 3.1 and 4.1 that the solution u
of (HF) has a finite speed of propagation.

Proof. We will work with form (1.1) of problem (HF) with ¢(t,x) and ul(x) given
by (2.4)H and (2.5)H. respectively. In order to make sure that the problem is well-

posed, we have to restrict the range of ux(t,x) to the set on which o' > 0. To

this end we introduce a constant N > 0 such that

(4.5) a'(w) > P, > 0, wE [-co,co]

At this point it is convenient to define
w

(4.6) ww) = [ o@E)&
0

and to note that, on account of (4.5),

3 h gl -
(4.7) Wiw) > 5 Pg¥ we [-chicyl .

=20~
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We will say that a quantity is “controllably small", if it can be made arbitrarily
small by selecting the initial data and the forcing term apgropriately small. For
example, on account of (f), Lemma 2.1 (ii), (2.4), and (2.5),, the L?(f0,®); L?(R))

norms of ¢, ¢ and the Lz(R) norms of u., u, _, u are controllably

e %% %er %ex 1" T1x" T1xx
small.

Our strategy is to show that there is a small positive number u, p < o’ depend-
ing solely upon a (the constant appearing in (Z.G)H). Py bounds of [c'(-)|.
lo"(-)| ana [0™(-)| on [-co.co], and the Ll(o.w) norm of k'(t), such that
if the local solution u(t,x) of (1.1), in the sense of Theorem 3.1, satisfies

(4.8) lo e |, o (g0 ], o (ex)] <u, 0<t<r, xer,

then certain functionals of the solution are controllably small.
We begin by multiplying the eguation in (1.1) by ut(t,x) and integrating each

term over [0,s] x R, 0 < s < T. We integrate the term
s @
[ ] otu_(t,x))_u_(t,x)axdt
X x t
0 ==

by parts with respect to x and use (4.6); we then use (2.6)H to estimate the term
S ® 3 t
f f ut(t.x) rve g k(t - Du, (1,x)drdxdt ,

0 =

and we thus obtain the estimate

o @ s ™
(4.9) % / wl(s,x)ax + [ W (s,x))ax +a [ [ uaxat
s 5 L N e T
Y3 - 83
<5 [ wioxax + [ w (0,x))ax + [ [ ou axat .
a7 -0 t -0 = 0 -0 t

We note that each term on the right-hand side of (4.9) either is controllably small
or can be majorized by the sum of a quantity that is controllably small and a quantity
that is dominated by the dissipation term, such as

s

(4.10) /| suaxae <

Q0 ==

s ™
&l u:dxdt ’
0 -0

R e
&R

@ o
[ | o%axat +
0
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Thus, for as long asm(4.8) is sati:fied with p < <:0,s (:.9), (4.10), together with
(4.7), yield that [ ui(s.x)dx. / u:(s.x)dx and [ [ uidxdt are controllably small,
- - -
uniformly on [(0O,T). "
We now derive two additional estimates, the first by differentiating the equation
in (1.1) with respect to t and then multiplying by utt(t,x), the second by
differentiating (1.1) with respect to x and then multiplying by utx(t,x). Following

the procedure in the derivation of (4.9), and noting that

2

3 3 /
(4.11) at—z (ktut) (t,x) = 3t (ktutt) (t,x) + k (t)ul(x) '
we obtain
Wl 1 2 ety
wazn up, (s.x)dx + o o' (u, (s,x))ug (s, )@ + a i uy dxdt
-0 -0 0 ==
1 3 17 2 S| 3
<3 ] g emax s 3] ot (0, Oxax + ({ [ 3 o"ta)u axat
8 ® s ™
+ [ [ o,u dxat - [ [ k'(t)uu dxdt ,
Q0 == Q0 ==
and
t¢ .8 S 2 Foe a9
(4.13) 2 L, utx(s.x)dx + 3 L’ o (ux(s,x))uxx(s,x)dx +a g {m utxdxdt
Vg a2 Ty 2 sl 2
£2 L up, (Oxdx + 3 L o' (u, (0,x))u’ (0,x)ax + g L 3 0" (uu, u” dxdt

s o™
+£ f ¢xutxdxdt .

=

We add up (4.12), (4.13) and we claim that in the resulting inequality, and as long as
(4.8) is satisfied with u sufficiently small, each term on the right-hand side is

either controllably small or can be majorized by the sum of a quantity that is controllably
small and a quantity that is dominated by the dissipation term. Indeed, the LZ(R) norm
of utt(O,x) is controllably small since

(4.14) uu(o.x) = a(qu(x))x + ¢(0,x) - k(O)ul(x) H
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space-time integrals are majorized in the pattern of the following representative samples:

© @™ ® o

-
2 a 2
(4.15) £ / o,u, dxdt < £ / opaxdt + 5 £ { ug dxdt ,

A
Q|+

- -0 00

@ @ o S @

S
ol .
(4.16) £ [ x (t)uju  dxdt

-0

A
|

- 0 =~o

§ ® 8 o
1 3 u i 2

wan | 30 (ux)utxdxdt £3 max le*e=31 [ [ utxdxdt ,

U [~cnoc.] 0 -=

0’0
N a 2 u o i

@asy ] So"tudu o axde <L omax o] [ ] u dxdt .

Q w= [=c.rC.] 0 -=

0 0
To estimate the integral on the right-hand side of (4.18), we express uxx(t,x) in
terms of other derivatives by

(4.19) 0‘(ux(t,x))uxx(t,x) = “tt(t'X) + k(O)ut(t.x) + (k'tut)(t,x) = ®(t,x) ,
which yields

1 3% g A 2 oty e 8
(4.20) Py g {O u_ dxdt < 4 g | ui axdt + 4x(0) g [ ujaxae

- -

vad kwlan? [ ujdxdt + 4 [ [ ¢%xat .
0 0 -w 0 -w

The restrictions imposed on u are expressed in terms of parameters fixed a priori.

For example, (4.17) imposes the restriction umax Io"(-)] < %. The combination
l-co.col
@

of (4.12), (4.13) and (4.20) yields that, as long as (4.8) is satisfied, f uit(s,x)dx,
-0

e 3 - 2 T Y r 5

f utx(s.x)dx, f uxx(s,x)dx, ] f utthdt' f f utxdxdt and f f uxxdxdt are

-0 -0 Q = 0 = 0 =

controllably small, uniformly on [O,T).

To get the final set of estimates we assume temporarily that the additional
hypothesis (3.20) is satisfied. Thus, by Theorem 3.2, u(t,x) enjoys the additional
smoothness property (3.21). We form the second derivative of the equation in (1.1)
with respect to t and we multiply by uttt(t.x); also the second derivative of the

equation in (1.1) with respect to t and x and we multiply by uttx(t,x). Following

«23=

1 i i 2 V] >
= sup|k' (t) | g |k*(t) |at [ ul(x)dx + {: if ul dxdt ,




the procedure used in the derivation of the previous estimates we obtain

@ @ @
1 2 1 ;
(4.21) 2 {w uttt(s,x)dx + 3 {m a (ux(s.x))u s (s,x)dx + a g !m dxdt
T ¥ 2 g
:_Ef Uy (0ix)ax + 5[ a'(u (0,x))ui, (0,x)dx + f { ok

-0 -

+

X Ttx ttotxx

0 -0 -00

©

) =4 20 o

S
+ j j ¢ u . axat - [ [ k'(t)u_ (0,x)u
o e 0 tt tt

-00

(4.22) % f u:tx(s,x)dx + % {m 0'(ux(s,x))u (s,x)dx + a f f u?

@
1 2 1 ' 2
<+ {m Ul (Oox)ax + 5 {w o' (u, (0,%))ur  (0,x)dx
1 2 g
+ 30" (u)u, up  dxdt + I o (@ )u u., u o dxdt
0 =-x Q0 -
SR s o 2
" 'l L
& f [ o (ux)utxuttx xxxdxdt + f f (u )utxux uttxdxdt
0 == 0 -»
S © ©
+ f f ¢ u___dxdt - f f k' (t)u e dxdt .
& L JEEEER Sk tx

f f 20" )u,_u _,u, __dxdt + f f o' (u )u u_u

0

tx xx ttt

S
Jxat - [ [

0 =

ttx

-0o

dxdt

2
"(u )ut uttdedt

(t)u.u

1ttt

dxdt

dxdt ,

We add (4.21), (4.22) and we claim that, as long as (4.8) is satisfied for a sufficiently

small u, then each term in the resulting inequality is either controllably small or

is majorized by the sum of a quantity that is controllably small and a quantity that

is dominated by the dissipation term. The Lz(R) norms of “ttt(o'X)

are controllably small since

(4.23) uttt(o'x) = ﬂ'(uOX(x))ulxx(x) + 0"(u0x(x))u1

- k(O)utt(O.x) - k'(O)ul(x) '

(4.24) uttx(O,x) =0 (uOX(x))quxx(x) + o"(uOX(x))u
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Whenever utxx(t.x) or uxxx(t.x) appear on the right-hand side, they should be

estimated in terms of derivatives for which dissipation information is available with

the help of
[ = - " -
(4.25) o] (ux(t,x))utxx = uttt(t.x) o (ux(t,x))ch(t.x)uxx(t.x) Ot(t,x)
+ k(O)utt(t,x) + k'(O)ut(t,x) & (k"-ut)(t.x) '
2
] = - " -
(4.26) o (ux(t:,x))uxxx uttx(t’X) o (ux(t.x))uxx(t.x) Ox(t.x)

L]
+ k(O)utx(t.x) + (k eutx)(t,x) .

Beyond that the estimations follow the usual pattern, e.g.,

s ® s ® 8§ o

1 2 a 2
(4.27) [ [ syu ame<>[ [ o anar 3 [ | ui e,
Q -0 Q0 == 0 -00
SR 2 u? =8 2
“" ) " (.
(4.28) [ [ o (uoup u u o dxdt < 5 max fo*¢c2l T § (up, + ug, . Jdxdt ,
0 =-» [=c,.c.] 0 «=
0’0
8 w 1 o @ 2 s ™ 2
" = " " 9_
(4.29) g J_'m kK"(t)uju  dxdt < = sup|k" (t) | (}; |k" (t) |at L ul(x)dx + o {)’ L ug, dxdt .

@

Combining (4.21), (4.22), (4.25) and (4.26) we deduce that f uitt(s.x)dx,

@ o @
2 2 2
{m uttx(s,x)dx, f utxx(s,x)dx, f u

-0 -0

A i
xx(s.x)dx, g {m u,dxdt, g f Uy dxdt,

-
CaRC SRpl

£ {w utxxdxdt and é [m uxxxdxdt are controllably small, uniformly on [0,T). More-
over, ge observe that the estimates involved depend solely on parameters depending on
the standing assumptions of the theorem and not on the additional assumptions (3.20).
Therefore, by a straightforward density argument, we may remove these extraneous
assumptions.

We now put together the information we ha;e collected on controllably small

quantities in all of our estimates, and we select initial data and forcing term so

"small" that, as long as (4.8) is satisfied,

=25«
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2 2 2 2 2 2
(4.30) {. lut(s,x) + ux(s,x) + utt(s'x) + utx(s'X) + uxx(s,x) + “ttt(s'X)
2 2 2
+ uttx(s.x) + utxx(s.x) + uxxx(s.x)]dx

S a0
T e N e 2 2 2 2
+ N T + + +
g L (e * Wer * Yo * e T Ueee t Yeex Ve T Vo!9XAE S0

0 < s < T. However, (4.30) implies, in return, (4.8) and the cycle closes. Once (4.30)
has been established, Theorem 3.1 yields that the maximal interval of existence of
u(t,x) is [0,») and (4.30) is satisfied for 0 < s < ». 1In particular, (4.1) and
(4.2) are satisfied.

Statement (4.3) is an immediate corollary of (4.1), (4.2) while (4.4) is a

corollary of (4.3) and (4.1). The proof is complete.




5. Global Existence and Asymptotic Behavior of Solutions of the Viscoelasticity

Equation. We show here that when the initial data and the forcing term are "small"
problem (VE) admits a unique, globally defined, solution which decays to zero as t + .
We note that the solution u of (VE) has a finite speed of propagation (see Remark 4.1).
The estimate (2.11) of Lemma 2.3 (iii) plays a crucial role in the analysis. The

result is given by

Theorem 5.1. Let (0), (a,), (9), (uj) and (u)) be satisfied. If the L'((0,=); LP(R))

norms of g, 9yr the Lz(lo,w): L2(R)) norms of 9y’ Jip’ Jex and the L2(R) norms

of u_._, u

of wu,. ) Big A u are sufficiently small, then there is a unique

oxx’ Yoxax’ U1’ Y1x’ Yixx

global solution u(t,x) € C2([O,w) x R) of (VE) and

L 2
(5.1) ut'“x utt'utx'uxx'uttt'uttx'utxx'uxxx € L ([0,»); L°(R)) ,
(5.2) R e e PSR SRR e P oy
- tt’ Tex Txx’ ttt’ ttx’ txx’ xxx T
§ 2
(5.3) utt(t,'),utx(t,-),uxx(t,-) +0, t >», in L°(R)
(5.4) u, (€,x) u (£,x) 0, (€,x),u (t,X),u  (£,x) >0, t > =, unif.on R.

Proof. As in the proof of Theorem 4.1, we will work here with form (1.1) of our problem.

We introduce again c by (4.5) and W(w) by (4.6) noting (4.7). We again consider

(o]
a local solution u(t,x) of (1.1), in the sense of Theorem 3.1, which satisfies (4.8)
for some T, 0 < T < ®, and a small positive u, u < Cyr to be specified later.

To get the first estimate, we multiply the equation in (1.1) by ut(t,x), we
integrate over [0,s] X R, 0 < s < T, integrating by parts with respect to x, and
we use (2.6)V thus obtaining

v .9 p 15738
(5.5) 5{ ug (s, x)ax + f Wiy, (s,%))ax 5_3{ ug(0,x)ax + f

an -0 £ -0 0 -0
Noting that
e 1 TR SO s Sk gk
(5.6) [ | euaxat <3 max [ wliemax + ([ () o’an/%an)
0 = [0,8] == 0 -
and using (4.7), we deduce from (5.5)
-27-

s
W(u (0,x))ax + [ [ du dxdt .




@
i 2 2
(5.7) 3 {m ut(s.x)dx + P, !u ux(s.x)dx
< wloax + 2 [ wag tnax + 20) (f o'an%aw?, o<s <.
-co -0 0 -0o

It is easily seen that, on account of (2.4)v. the Ll((O,w); Lz(R)) norm of ¢ is

© ©
controllably small, so that it follows from (5.7) that f ui(S.X)dx and f u:(s,x)dx

- -0

are controllably small, uniformly on [O,T).

In the following estimates we seek to take advantage of the dissipative mechanism
which manifests itself through Lemma 2.3 (iii). To this end, we shall use the
equivalent form (2.9) of our problem (VE).

We differentiate (2.9) with respect to t and we multiply the resulting equation,
first by utt(t'X) and then by ut(t.x). Integrating over [0,s] x R, 0 <s < T,
integrating by parts with respect to x, etc., we end up with the following two
equations:

® S
2 1 § 2
L ug (soxdx + 5 [ o (u, (s.x))ul (s,x)ax + [ [ u, (reu ) dxdt

-0 Q0 =x

©

(5.8)

N[ =

N =

(0,x)dx
X

s © © o
; 2 i) 2 . 2
“ g é’ _L o' (u,)ug dxdt 2] ug, (0,x)ax + L o' (u, (0,x))ug

s @ ©

& 3 Dl
+£ [ =0 (uug axdt 8 J O(ux(S.X))utx(s,x)dx+BI o(u, (0,x))u

-0 -0 -00

N |-

tx(0.x)dx

s o
+ f f ¥ u _ dxdt ;
0 ttt

-00

@ ©

S
W(u(s,x))dx -£ | ug, (Reu axdt

-C0

@
8 2
(5.9) 5— [ ug(s,x)ax+8 /[

® = -0

Y .3 S 2
—({ / uttdxdt+£ I o' (u Jug dxdt =

By a8 i
2—a—f ug(0,x)dx + 8 [ Wlu (0,%))dx

-o0 o =0 -0

- f ut(s,x)utt(s,x)dx +] “t(o'X)utt(o'x)dx

-00 -00
@ s ®

-/ u (s, (Reu ) (s,x)dx + [ [ ¥ udxdt .
-c0 0 ==»
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We now multiply (5.8) by q (see Lemma 2.3) and we add it to (5.9). Using (2.11) we

obtain

o o

¢ .2 g r R e 2
3 't(s,x)dx +8 w(ux(s,x))dx sl "tt(s'X)dx 2 {m a (ux(s,x))utx(s,x)dx

® =0 -00 -00

B

(5.10) 2a

o«

A A : 2
Y f f uthth + (1 - gB) é i o'(ux)utxdxdt

L

+

Q =-x

L L
8 2 q 2
=1 ut(O,x)dxd-Bf W(u, (0,%))dx + 3 / ug, (0,%)dx

0 = - -0

A

@
. 2 =y
a (ux(O.x))utx(O,x)dx {wut(S.x)utt(s.x)dx * f ut(o'X)utt(o'X)dx

+

2!

0

© ©

aB olu (s,x))u, (s,x)dx + qB [ o, (0,x))u, (0,x)dx

-00 -0

© s o

< {m ut(s,x)(Rtutt)(s,x)dx +q f f

0 -

N =

" 3
a (ux)utxdxdt

© o

S S
£ | Ypaxae +q [ [ ¥ou  dxdt .

-00 0 -c0

+

We claim that each term on the right-hand side of (5.10) is either controllably small,
as long as (4.8) is satisfied with sufficiently small 1, or it can be majorized by
the sum of a controllably small quantity and a quantity dominated by the left-hand
side of (5.19). Thus, for example, the L2(R) norm of utt(o,x) is controllably

small in view of (4.14). Also

{
@ o @ &
: # 1 2 g 2 {
(5.11) {u ut(s,x)utt(s,x)dx < {w ut(s,x)dx iy {m utt(s,x)dx ' ‘
# % P ;s 1/2 |

(5.12) - {n ut(s,x)(Rtutt)(s,x)dx < {, Iut(s,x)|{£ R (1)dt} {g utt(T'X)dT) dx

© @

8 ™
< % sup|R(t)| [ |R(t)|ae [ ui(s.x)dx + %»[ f u:tdxdt :
0 0 -

e 3 S
= g "i.
f 3 O"(uug dxat < 51 max je*¢at | [ ug dxdt

- [-co,c ] 0 =

(5.13) q f
” 0
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g w L) © ©
(5.14) [ ] vpuaxae <3 max [ wemax s f (f ¥aoMan?
QG - [0,8] == 0 -
s qz LI 2 Y s = 2
(5.15) q g {. ¥,u, dxdt < 1;-5 {w ¥ axat + J g I. ug axdt .

@ ©
After the above estimations (5.10) yields that f u:t(s.x)dx, f u:x(s,x)dx,

-0 =00

s s
f f u:tdxdt and f f u:xdxdt are controllably small, uniformly on [0,T), of
0 0

course always as long as (4.8) is satisfied for a sufficiently small u (from (5.13),

pg max jo" ()] < - qﬁ)po). Using (4.19) which we rewrite, after an integration
[-c..c.]
0 0

by parts, in the form

{5.16) o'(ux(t,x))uxx(t.x) = utt‘t'X) & k(t)ul(x) + (k'utt)(t'X) - o(t,x) ,

S @
we deduce that also f uix(s,x)dx and f f u:xdxdt are controllably small,

-00 Q -0

uniformly on [0,T).

To get the next estimate we assume temporarily that condition (3.20) holds, so
that u(t,x) is smoother, we take the second derivative of (2.9) with respect to t
and x and we then multiply the resulting equation first by uttx(t,x) and then by
utx(t,x). We integrate over [0,s] x R, 0 < s < T, and after a long computation we

arrive at the following two equations:

2 1 3 2
f “ttx(s'X)dx + 3 f o (ux(s.x))ut

(5.17)

N -

S @
xx(s,x)dx + £ Iw uttx(rauttx)tdndt

s o ]
/ 2 1 2 T : 2
- f g I. o' (uJug dxdt = 3 { Ul (0,X)dx + 5 I. o* (u, (0,%))u . (0,x)dx

@
-8 {_ o' (u (s,x))u (s, x)u, (s,x)dx + B [ o' (u (0,x))u  (0,%)u,  (0,x)dx

-00

s
3 g f % ““(“x)utx“ixdedt + f f 6" u u

-0 Q0 =o

xxuttxutxxdxat
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Fhrm

S
axdt - [ [ o™ (u)u,_u’ u, __dxdt

i ] f g (“x)utxuttx“xxx X tXx xx ttx

0 -0 0 -0
s o o
+ Bg L o"(uugu u dxdt + j [ ¥ U e dXdt
g ten 8 2 i
(5.18) 5;: o utx(s,x)dx £ {Q o (ux(s.x))uxx(s,x)dx - g {w “ttx(k'“ttx)dxat

T
{m utx(o.x)dx

- f f u2 dxdt + f f o' (u )u dxdt =
) ttx P

L
8 ' 2
*ie {w g (ux(O,x))uxx(O,x)dx -/ u (s.x)u o (s,x)dx + / utx(o'X)“ttx(o'X)dx

-00 -00

© s o

- f utx(s.x)(Rauttx)(s.x)dx = f f au(“x)“tx“xx“txdedt

-0 Q =-x

Nlm

s ™
g ] qn(“x)utxuidedt + é f Vtxutxdxdt .
-Q0 -0

Multiplying (5.17) by q then adding it to (5.18) and using (2.11), we obtain

(5.19) Ea—f u (s,x)ax + —f o' (u (s,x))02 (s, x0dx + 3[ u e (8020

+ 3 f o' (u (s, x))u ((SeX)dx +y f | ™ txdxdt

.5 S BT B 2
+ 1 -af [ [ o'tugul axae < 5 [ w2 (omax + S f o' (u, (0,%))u’,

0 -0 ® =0 tx

g 2 &1 g 2 3
- !w UL (Orx)ax + 3 [ o (a (0,x))ug  (0,x)dx f u (siug (s,x)dx

-0 ~00

- '
* (O.x)uttx(o,x)dx B[ o (ux(s.x))uxx(s.x)u (s,x)dx

L Yex 5, txx
L] @

+a8 [ o'(u (0,x))u (0,x)uy, (0,x)dx = [ u (s,%) (Reu ) (s,x)dx

- -

=31~

(0,x)dx
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e —

.

ST G 7 oot g -

— "
+q I f. a" (u )u u dxdt +q f {- o (u Ju ot tx txxdxdt
@ o 2
-q f f o" (u ) YexUetxtxxxdXdt - @ f / o™ (u)u u u . dxdt
0 == 0 =-x

s = s
Bq f f 0“(ux)utxuxxutxxdxdt - f [ o"(u_)u, _u_u, _ dxdt
Q0 =x Q0 -

+

X' TEX xx txx

o« o

(]) Lo"(u)u u dxdt+f SR e dxdt+qf f ¥ Uy dXdt

+
N |

~
As long as (4.8) is satisfied with p sufficiently small, each term on the right-hand
side of (5.19) is either controllably small or it can be estimated by the sum of a
controllably small quantity and a quantity dominated by the left-hand side of (5.19).
To show that the LZ(R) norm of uttx(o'X) is controllably small, we use (4.24). To
estimate U .x e express it, with the help of (4.26), in terms of derivatives on
which we already have information. The remaining steps of the estimation follow the

by now familiar pattern. For example,

= 2 q
(5.20) Luu(s,x)uw‘(s,x)dx < L ug, (s,x)dx + 7 L ug,, (s/xax

Q|-

(5.21) - f “tx(s'X)(R'“ttx)(s'X)dx

o L s ®

1 2 2
o sup|R(t) | g |R(t) |at L ug, (s,x)dx + 41£ | ug,exat .

o s ®
x 2 2
s ¥ I {. 0”(“x) xxttx txdedt z —g o |°"(')| f I (uttx 3 utxx)dth 4
[-c..cC |
oo
qz @ 2 Y 2
(5.23) q [ ¥ _u_ axat < == ¥ _dxdt + — u_ _dxdt .
£ Cw X ttx Y g {. tx 4 £ {a ttx

Thus, (5.19) yields that, as long as (4.8) is satisfied with small 1y, I uitx(s.x)dx.
-00

f u (l,x)dx, f f u dxdt and f f u dxdt are controllably small, uniformly
0 == O e txx
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on [0,T). We now discard, with the help of a density argument, the extraneous

2

a0
hypothesis (3.20). Using again (4.26) we conclude that | us

-

(s,x)dx and
X

S o
f ] u:xxdxdt are controllably small, uniformly on [0,T). Fipnally, using (4.25),
0 -»

after rewriting it in the form

(5.24) uttt(t'X) = 0'(ux(t,x))utxx(t.x) + 0"(ux(t.x))utx(t,x)uxx(t,x)
+* Ot(t.x) - k(O)utt(t.x) =ik (t)ul(x) - (k *utt)(t,x) ’

® s

we deduce that f uztt(s,x) and ] f u2

tttdxdt are also controllably small, uniformly
-0 Q0 =-x

on [0,T).
Combining the above information, we select initial data and forcing term so small

that, as long as (4.8) is satisfied,

2 2 2 2
(5.25) f [ut(s,x) + ux(s,x) + utt(s,x) + u

2 2
tx(s,x) + uxx(s,x) +u

ttt(s.x)

-0

+ (s,x)]dx

XX

: (s,x) + u2 2
tx 00X x

+
u, txx(s,x) u

FOIE B AT T AR T e e T L
XXX =

0 <s < T. Since, in return, (5.25) implies (4.8), we conclude with the help of
Theorem 3.1 that the maximal interval of existence of u(t,x) is [0,») and that
(5.25) is satisfied for s € [0,»). 1In particular, (5.1), (5.2) hold. Assertion (5.3)
follows from (5.1), (5.2) and (5.4) is a corollary of (5.1) and (5.3). The proof is
complete.

Remark 5.1. If a(t) = % (1 + e-t), (VE) is easily shown to be equivalent to the
Cauchy problem

L 1
uttt + Ve ™ 0(“x)tx + 3 c(ux)x.+ g + 9,
u(0,x) = uo(x). ut(O.x) = ul(x). utt(o,x) = 0(u0x(x))x

that was studied by J. Greenberg [3]. We note that our Theorem 5.1 applies to this

problem.

=-33=-

o s

S —




Ty

o .

6. Boundary Value Problems. In this section we make a few remarks on initial-boundary

value problems for the heat flow and the viscoelasticity equations. We assume that

the configuration of the body is the interval [(0,1] and we impose homogeneous boundary
conditions of the Neumann type. For the heat flow equation these boundary conditions
mean that the boundary is thermally insulated, while for the viscoelasticity equation

they mean that the end points are free. In the place of (HF) and (VE) we now have

1
]
{
t |
ut(t,x) = f a(t - r)c(ux(t,x))xd‘r + f(t,x), O<t<ew, 0<x<1l, 3
0 _
*
- wo,x) =u x), 0cxc<1, ?
u (£,0) =u (t,1) =0, 0<tc<w,
t
u,, (£ = O(ux(t,x))x*(f) a'(t-tofu (1,x) dt+g(t,x), 0<t<wm, 0<x<l,
*
(VE)

u(0,x) = uo(x), uc(o,x) = ul(x), 0<x<1,

i

ux(t.O) =u (1) =0, 0<t<e,

The proper replacements of assumptions (f), (g), (uo) and (ul) are

- 2 2
(f) frftofx:fttiftx:fxxpftttrfttx:ftxx € L ([0:“)5 L (011)) v
@" g.q, € Lrr0,#; 20,1 g, € t2(10,=; 20,10
9 . ' .gx.gttr tx . v .
u. ,u u € L2(0 1)
o Ox’ Oxx’ Oxxx :
(uo)
qu(O) = "'Ox(l) =0
u,,u,_,u € LZ(O 1)
* 1° 7 1x" "1xx i
(ul)

ulx(O) =u x(l.) =0

1
* *
For problems (HF) and (VE) propositions analogous to Theorems 4.1 and 5.1 hold,

namely,

Theorem 6.1. Let (a), (a), ()" and (u)) be satisfied. If the L’([0,=); L2(0,1))

v £ » £ and the Lz(k) norms of u

norms of f, fr,’ fx. f“. ftx' f“, fttt ten’ Toun

ox’
Yosx’ Yoxxx 2%& sufficiently small, then there is a unique global solution i
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*
ult,x) € C2([0,®) x [0,1]) of (HF) and

® 2
(6.1) LT STL RO P W N R RO € L ([0,2); L (0,1)) ,

2 2
» 0 . ’ » . € ’ H v .
(6.2) VoW s M ol P e M Uy * BT 110,%) 2 LD, 1))

(6.3) ut(t,x).ux(t,x).utt(t.x),u x(t,x),uxx(t.x) + 0, t+®, unif. on (0,1) .

t

*
Theorem 6.2. Let (0), (a)), (9", (u) and (u)” be satisfied. 1f the L (10,%); L2(R))

2 2 2
norms of g, 9+ the L°([0,»); L"(R)) norms of 9t Fop Tex and the L"(R) norms

PR are sufficiently small, then there is a unique

of Vg ¥ 1xx

0x » U, U

1 1x
global solution wul(t,x) € Cz(lo,w) x [0,1]) of (VE)* and

oxx’ “oxxx

o e Lo, e 2200

(G4 YU Mot Pex xx Vet Teex Yexx U xx

u___ e L2(10,#); t3(0,1)) .

(6.3) Uee Yex Uxx Vet Veex Yexx xxx

(6.6) ut(t,x),ux(t,x),utt(t,x),utx(t,x),uxx(t,x) -+ 0, t »», unif. on (0,1) .

The proofs of Theorems 6.1 and 6.2 are identical to the proofs of Theorems 4.1
and 5.1, respectively. Indeed, virtually all equations of Sections 3-5 are valid also
for the Neumann boundary value problem, provided that integration with respect to x
over (-=,®) be replaced by integration over (0,1). In particular the crucial
estimates (3.6)-(3.10), (4.9), (4.12), (4.13), (4.21), (4.22), (5.5), (5.8), (5.9),
(5.17), (5.18) are valid. The reason is that the assumed Neumann boundary conditions
annihilate the boundary contribution when, in the derivation of the estimates, we

integrate by parts with respect to x.

The same observation holds if we replace the Neumann by Dirichlet boundary conditions,
(6.7) u(t,0) = ult,l) =0, OXEcw,

provided we impose on the forcing terms the condition

(6.8) f(t,0) = f(t,1) =0, 0<t <o,
(6.9) g(t,0) = g(t,1) =0, D% & ¢ @,
*
The reason here is that (6.7), (6.8), (6.9) and the equations in (HF).. (VE) imply

(6.10) o(ux)x(t.O) - O(ux)x(t.l) =0, O E Ee -,




so that boundary contributions are again annihilated when, in the derivation of the
‘estimates, we integrate by parts with respect to x. We also note that for the
Dirichlet boundary-initial value versions of (HF) and (VE) we can also conclude that
u(t,x) - 0, uniformly for x € [0,1], as t + «. If one imposes boundary conditions
(6.7) but without (6.8) and (6.9) the problem can be solved but the estimates need
certain modifications that we shall not discuss here.

Finally, we remark that MacCamy [7], [8] studies the initial~boundary value
problems for (HF) and (VE) only for the case of Dirichlet boundary conditions, and
that his assumptions on the boundary values of the data, see assumptions (uo). (f3)

of [7] and ‘Uz)’ (F4) of [8], are different and more restrictive than ours.
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7. Two-Dimensional Heat Flow with Memory. In this section we outline the applicability

of the energy method to the initial value problem (compare with (HF)):

t
ut(t,xl,xz) + (]; a(t - T)Au(t.xl.xz)d'r = f(t,xl,xz)
(0 <tc<w x= (xl.xz) € Rz) v
2
(7.1) u(O.xl.xz) = uo(xl.xz) (x € R) ,

Au = _{5_3_ [w(Juz + u2 )ux ]4—33—[\9(4\12 + u2 )ux ] 3
o SRR %5 G T T 5 )

We assume that the function ¢ : R+ + R satisfies
4 _+

(v) v € C(R) and ¢(0) >0 .
The problem (7.1) represents a mathematical model for heat flow in an unbounded two-
dimensional body of material with memory.

Proceeding as in Section 2 we differentiate (7.1) with respect to t., we define
the resolvent kernel k of a' by equation (k) (we assume for the moment that a
satisfies (aH), and that f is smooth), and we apply the procedure of Section 2 to

arrive at the following equivalent form of (7.1} (compare with (1.1))

t
u_ (t,x) + 2 f k(t = T)u_(1,x)dt = -Au(t,x) + ®(t,x), O < t <=, xE€ ®?
tt it o t

(7.2) u(0,x) = uo(x), ut(o,x) = ul(x) = f(0O,x), x € R2

t
o, x) = £ (t,x) + k(OE(t,x) + [ k'(t - Df(t,x)dr, O0<t<w xe R
0

2

We shall use (7.2) to obtain global results for (7.1) in a manner analogous to the
way (1.1) is used in the proof of Theorem 4.1. Since (7.1) and (7.2) have two space
dimensions, the energy method requires that we obtain estimates of various partial

i - 2 ; 2 20l
derivatives of u up to order four in L (([0,®); L°(R")) and in L°([0,®); L°(R"))
(rather than up to order three for (HF) in one space dimension). This means that for
technical reasons the kernel k and the function ¢ in (7.2) have to be correspondingly

smoother, in order to permit the additional differentiations of (7.2). To be precise

we replace assumptions (aH) regarding the kernel a in (7.1) by (compare with Section 2):




(3)

(i) a € C‘IO,-'), a (t) are bounded on [0,®) for j = 0,1,2,3,4

(ii) a(0) =1, a'(0) <O . “
(a )

(i) ta™ (o) e Llo,®), 3§ =0,1,2,3,4, &= 0,1,2,3,4
(iv) Re a(in) > 0, n€ R.
One then easily has the following strengthening of Lemma 2.1.

Lemma 7.1. Let the assumptions (SH) be satisfied and let k(t) be the resolvent kernel

of a'(t). Then 83

3 (1) k(t) € C3[0,°): k(t), k'(t), k"(t), k" (t) are bounded on [0,®).
= 1 ;
©  a(0)’

(iii) The inequality (2.6)H holds for some a > 0 and for every v € L2(0,T).

(11) k(t) =k, * K(t); k k™ () e LY 0,m, m=0,1,2,3.

With the aid of Lemma 7.1 (i), (ii) one readily verifies that if f in (7.1)

satisfies the assumptions

3 2 2
£) Sl ol By BBy o e Foree Teree *Tree x, Tan e, 40 IRSWIL (HD,
b s [ 2 i7j Jj ] 159 i7j7e

i,j,2 =1,2,

then the function ¢ in (7.2) has the property .

- 2 3 Sk ! 3
3 9 bl et Y et Oy Ve n ¢ B U R g e 1,2 | 3
j 300 T STy

(compare with (f), (¢) in Section 1).

Concerning the initial datum uo we assume

2 =2 Wy
'u0xix xx €L (®R), i,5.8m= 1,2. j

(u.) u__ u
s 37 m

ox. "ox.x, " Yox,x.x
j i3 b S T3
Our global result for (7.1), analogous to Theorem 4.1 for (HF) is: i

Theorem 7.1. Let the assumptions (v), (;H)' (£), lt;o) be satisfied. If the

t2((0,#); L?(R) norms of f and its partial derivatives in (f) and the 12(%%) ;

norms of the partial derivatives of u_ in (t:\o) are sufficiently small, then there is

0
a_unique global solution u(t,x) € C2([0,«) x R%) of (7.1) and

i S

u_.,u_ ,u__,u »u »u ,u ,u u

tox, Ut e, t tx. L '

i 3 xixj LEL ¢ 3 txixj xixjx!

(7.3) 5 5 9
€ L ((0,2); L"(R")), i,j,2,m=1,2,

u ) A} »u U
ttte tttxj ttxixj txixjxt xixjxtxm




u_.u__,u ) u A u u u A ’
X, XX ttt tttx
LS - tx]. xIXJ ttt ttxj txixj X4 3% ttt t 3

(7.4) 2 2 2
u ] Q € L°([0,%); L°(R")), i,j.tm=1,2,
ttxixj txix].xl xixjxixm
ut(t,').utt(t.'),utx (tt')pux x (tl'):“ttt(t,')ruttx (t, ),
i %5 i
(7.5) 2 2
utx.x (t'.)'ux.x.x (tl-) + 0, gg i o, ﬂ L (R ), 11311 =1,2,
i) i737
u, (t,x) ,u (t.x).u':t(t:.x).u‘:x_(t:.x),\.1x x (EX) >0 as t e,
(7.6) 3 3 1

uniformly for x e Rz, 1.0 =1,2 .

The proof of Theorem 7.1 is completely analogous to that of Theorem 4.1, although
more complicated technically, and we confine our discussion to a few remarks. The
existence of a unique local solution of the equivalent problem (7.2) is handled as in
Section 3 by a fixed point argument. In analogy with Section 3, eq. (0)*, we replace

temporarily (¢) by the stronger assumption

w)* o ct(®"), o 2p, W' +ew >p, By> 0, we R,

which guarantees that the operator A is uniformly elliptic. 1In place of the set of
functions X(M,T) of Section 3 we now define for any positive M and T the set
X(M,T) of functions u(t,x) € C2([0,T] x R°) with initial values u(0,x) = u (x),
ut(O,x) = ul(x) = f(0,x), x € Rz, such that the partial derivatives in (7.3) are in
L'(IO.T]; LZ(RZ)) and which satisfy (compare with (3.3) for n = 1)

2

(7.7) [:‘:51 L {m u:(t,x) + uit(t,x) + u:tt(t,x) + u:ttt(t"‘) + 121 (u:i(t,x)
+ u2 (t,x) + u? (t,x) + u? (t,x)) + % (uz (t,x) + u? (t,x)
tx, tex, tetx, 9=\ %%y t:xixj
2 2 2 2
+ utuixj(t.x)’ + 1,j§g-1 (uxixsz(t'x) + utxixjx!(t,x))
G % u? (t.x)}dx ax, < M2 .
i3, 0,me1 *i1%5%0%n e

Note that i(ll.'l’) is nonempty for M sufficiently large. Observe also that if

ue X(M,T), then by Sobolev's inequality (see e.g. [1, p. 32])
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o e

Py

(7.8) sup _{]u (t,x)|,|u. ()], |u,, (t,x)],|u, (t,x)],
Pl X tt tx,

lo, , (&0 |} <m (Lodem 1,2)

1]

(compare with (3.4)). The fixed point argument, quite analogous to that of Theorem T
is now applied to the map S : X(M,T) » C2(IO,T] x Fz) which carries a function
v E i(H.T) into the solution u(t,x) of the linear hyperbolic initial value problem

(compare with (3.5))

s utt(t.x) + k(O)ut(t,x) = ¢(¢4i + vi )[
1 2

AR

1 2

ux o +u " ]
PR e tans

+ [v: ux - + 2vx vx ux i + vi ux = ]
(7.9) < V: 3 vi 3 i e a2 =2 2 272
1 2
£ LX) - (K'avy) (£,%) O<t<m, xe R
. u(0,0) = ug(x), u (0,%) =u (x) = £00,x) (xe B) .

One arrives easily at analogues of Theorems 3.1, 3.2 for the existence, uniqueness,
and reqularity of the (generally) local solution u(t,x) € Cz(lo,To) x Rz) of the

Cauchy problem (7.2) on a maximal interval [0,T0), To < « , such that for Te€ (O,TO)

u_,u

u__,u u u u A Q
£, e e, x5, X o
Xl t i i*5 ttt ttxl txlx

x.,%.,x 'Yttt Veetx,
» PR 3}

(7.10)

© 2,2
u € L ([0,T]; L (R)) ,

U U
ttxixj txixjxl xixjxlxm

for i,j,%,m = 1,2 (compare with 3.2); moreover, if TO < ®», then the integral in
(7.7) +» as ¢t »> TS. We omit the details.

Tﬁ complete the proof of Theorem 7.1 one proceeds to obtain energy estimates for
derivatives of u as in Section 4 (however, to obtain the L”(lo,w): L2(R2) and the
Lz(lo,w); Lz(Rz)) estimates of the fourth derivatives of u in (7.3), and (7.4),
it is now necessary to differentiate (7.2) up to three times, as opposed to up to twice).

Similar to the proof of Theorem 4.1 we have to restrict the range of uxl(t,x)
and ux (t,x) to the set on which A is elliptic in order that (7.2) be a well posed

2
problem. We choose a constant cq > 0 such that
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(7.11) $w) > po. we'(w) +¢(w) 2p,, Py >0, we [0,c0] .
w
We define W(w) = [ E¢(E)AE and we note that
0
(7.12) W(w) > 1 P w? we [0,c.)
¥ 2 0 ’ ’ o .

As in Section 4 the aim is to show that there exists a number u, uy < o’ such that

if the local solution u(t,x) of (7.2) satisfies (compare with (4.8))

(7.13) [O':;fnz(|uxi(t.x)|.|utxi(t.x)|.|uxixj(t,x)|} <u, (i3 =12,
then certain functionals of the solution u are controllably small.

To obtain the first set of estimates we multiply (7.2) by u, and integrate each
term over [0,s] X Rz, 0 <8 <Tc«< To. We make use of (2.6)H in Lemma 7.1 (iii), an

integration by parts (compare with (4.9)), and we obtain

(7.14) % J f ug (s,x)dx dx + f f w(/’i (s,x) + u? (s,x) )dx dx
-~ e e 1 X 2

2

+a I rr ul(t,0dx ax at < 3 {w £¢ u? (0,x1ax, ax,

@
R | wllcz (0,x) + ui (0,x) )ax dx, + f [ / ®(t.x)u (t,x)dx dx dt .
-0 =00 1

=00 =0

By an argument similar to that following (4.9) one obtains that

S ® o
f f uy (s.x)dx ax,, ] f u: (s.xaxax, =12, [ [ [ ui(t,x)dxldxzdt

- -m -® -0 i 0 =-» =»
are controllably small, uniformly on [O,T).

We omit the derivation of the remaining, technically involved, energy estimates
which follow the pattern of those in Section 4. We only remark that for most of these

calculations it is convenient to write Au in the form

Au = -v(/uil + uizl(u”1’1 +u, ; ( )

X, X X

2u_ u_u +
‘1 L | o e Tt 2 *3%e
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once we have obtained the L~((0,m); LZ(R%) and r2((0,1); L2(R%)) estimates
of derivatives of u up to order four, we can select initial data and forcing term so

"small" that, for as long as (7.13) is satisfied, one has (compare with (4.30))

® @ 2
2 2 2 2 2 2 2 2
[ [ i+u] +u +u + ) (S +u +u +u )
e t tt ttt tttt i=1 xi txi ttxi tttxi
2 2
2 2 2
+ 2 (u, +u +u ) + )) (u +u )
i,9=1 ixj txixj ttxixj i,3,4m1 x‘xjxl txixjxl
2 2 SN L g 2
+ )) u Yax.ax, + [ [ [ (ul+ul +u +u
i,3,2,m=1 xixjx,_xn R A tt ttt tttt
2 2
2 2 2 2 2 2
+ 2 (u +u +u ) + Z (u +u +u )
{1 txi ttxi tttxi i,9=1 ixj txixj ttxixj
2 2
2
EA w2 +inl ) + ) 0 }ax. dx at < u° ,

u
i,5,4=1 xixjx" txixjxl i,3,%,m=1 xixszxm 102

and one concludes the proof of Theorem 7.1 exactly as that of Theorem 4.1.
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